END SEMESTER EXAMINATION - JULY 2023

Program: S.Y.B.Tech (Electrical) Sem UV
Course Code: BS-BTE401
Course Name: Applied Mathematics-IV
\section*{Duration: 3 Hours}
Maximum Points: 100
Semester: IV

Note:

1. Attempt Any Five Questions
2. Answers to the sub questions should be grouped together

		Questions	Points	C0	BL	Mo dule
1	a	The probability of a man hitting the target at a shooting range is $\frac{1}{4}$. If he shoots 10 times, what is the probability that he hits the target exactly three times? What is the probability that he hits the target at least once?	6	CO2	BLS	
	b	The equations of the lines of regression are $20 x-9 y-107=0$ and $4 x-5 y+33=0$ Find \bar{x}, \bar{y} and r.	6		$\overline{\text { BLS }}$	
	c	Solve the following system of equations using Gauss Seidel Iterative method $\begin{aligned} & 6 x+15 y+2 z=72 \\ & x+y+54 z=110 \\ & 27 x+6 y-z=85 \end{aligned}$	8		BL3	
2	${ }^{\text {a }}$	A manufacturer of electric bulbs, according to certain process, finds the S.D. of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave S.D of 95 hours. Is the manufacturer justified in changing the process?	6		BLS	
	b	Find real root of the equation $x^{3}-3 x+1=0$ lying between 1 and 2 correct to three decimal places using Newton-Raphson method.	6		BL2	
	c	Two independent samples of sizes 8 and 7 contained the following	8		${ }^{\text {BL3 }}$	

END SEMESTER EXAMINATION - JULY 2023
values

Sample I	19	17	15	21	16	18	16	14
Sample II	15	14	15	19	15	18	16	

Is the difference between the sample means significant?

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION - JULY 2023

$$
\quad f(x)= \begin{cases}k\left(1-x^{2}\right), & \text { if } 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

is the probability density function. Also find $P(0.1 \leq X \leq 0.2)$ and $P(X \geq 0.5)$
b The S.D of a random sample of 1000 is found to be with 2.6 and the S.D of another random sample of 500 is 2.7 . Assuming the samples to be independent, find whether the two samples could have come from population with the same S.D? Iterative method
$28 x+4 y-z=32$
$x+3 y+10 z=24$
$2 x+17 y+4 z=35$

6	a	Certain pesticide is packed into bags by a machine. A random sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows $50,49,52,44,45,48,46,45,49,45$ Test if average packing can be taken to be 50 kg at 5% LOS.				6	BLS	
	b	The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8 . If the sum of squares of the differences in ranks is 33 . Find the number of students in the group.				6	BL3	
	c	For normal distribution 30% items are below 45 and 8% items are above 64. Find the mean and variance of the normal distribution				8	\|	
7	a	Two random sample gave the following data				6	$\begin{array}{\|l\|l\|} \hline \mathrm{BLL2,} \\ \mathrm{BLL} \end{array}$	
		Sample No	Size	Mean	Variance			
		1	1000	67.42	2.58			
		2	1200	67.25	2.5			
		Is the difference between standard deviation significant?						

Chi-Square (x^{2}) Distribution
Area to the Right of Critical Value

Table of the Student's t-distribution

The table gives the values of $t_{\text {wik }}$ where $\operatorname{Pr}\left(T_{v}>I_{4, v}\right)=a$, wh v degres of fredom

y	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.985	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	1.173	12.924 8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	
7	1.415	1.895	2.365	2.988	3.499	4.785	5.959
8	1.397	$\pm .860$	2.306	2.806	3.355	4.501	5.408 5.041
9	1.383	1.833	2.262	2.821	3.250	4.501	4.041
10	1.372	1.812	2228	2764	3.169	4.144	4.587
11	1.363	1.790	2201	2.718	3,106	4.025	
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2160	2.550	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	0.746	2.120	2.593	2.921	3.686	4.015
17	1.333	1.740	2110	2.557	2.898	3.646	3.905
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.329	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	4.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.390	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	4.303	1.684	2.021	2.423	2.704	3.307	3.551
60	+ 1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
∞	1.282	1.645	1.960	2.326	2.576	3.090	3.291

Standard Normal Distribution Table

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	09
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	. 0359
0.1	. 0398	. 0438	. 0478	. 0517	. 0557	. 0596	. 0636	. 0675	. 0714	. 0753
0.2	. 0793	. 0832	. 0871	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	.1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	. 1480	. 1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	1844	. 1879
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224
0.6	. 2257	. 2291	. 2324	. 2357	. 2389	. 2422	. 2454	. 2486	. 2517	2549
0.	. 2580	. 2611	. 2642	. 2673	. 2704	. 2734	. 2764	. 2794	. 2823	. 2852
0.8	. 2881	. 2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. 3413	. 3438	. 3461	. 3485	. 3508	. 3531	. 3554	. 3577	. 3599	3621
1.	. 3643	. 3665	. 3686	. 3708	. 3729	. 3749	. 3770	. 3790	3810	830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	. 4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	. 4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 425	. 4265	. 427	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 4357	. 43	. 43	. 43	44	. 4418	9	1
1.	. 4452	. 446	. 4	. 448	. 44	. 450	. 451	4525	4535	545
1.7	. 4554	. 456	. 4573	. 458	. 4591	. 4599	. 4608	. 4616	. 4625	4633
1.8	. 4641	. 4649	. 4656	. 466	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 474	. 4750	. 4756	. 4761	. 4767
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	. 4798	. 4803	. 4808	. 4812	. 4817
2.1	. 4821	. 4826	. 4830	. 4834	. 4838	. 48	. 4846	. 4850	. 854	57
2.2	. 4861	. 4864	. 4868	. 4871	. 4875	. 4878	. 4881	. 4884	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4901	. 4904	. 4906	. 4909	. 4911	. 4913	. 4916
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 493	. 4932	. 4934	. 4936
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959		. 4961	62	63	. 4964
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 497	. 4972	. 4973	974
2.8	. 4974	. 4975	. 4976	. 4977	. 4977	. 4978	. 4979	. 4979	. 4980	. 4981
2.9	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986
3.0	. 4987	. 4987	. 4987	. 4988	. 4988	. 4989	. 4989	. 4989	. 4990	. 4990
3.1	. 4990	. 4991	. 4	91	. 4992	. 4992	. 4992	4992	. 4993	. 4993
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4996	. 4996	. 4996	. 49997
3.4	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4998
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998

[^0]

Bharatiya Vidya Bhavan's
Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

End Sem July 2023

Program: Electrical Engineering
 Course code: PC-BTE401

Name of the Course: Analog Circuits

Duration: 3 Hour
Maximum Marks: 100
Semester: IV

Solve any five questions out of seven.

Q. No.	Match the following two columns . Explain the same.		Pts	co	BL	Module
			10	1	2	1
1 A						
	Column A	Column B				
	Collector current in quiescent condition is zero	Transformer coupled class A amplifier				
	theoretical conversion efficiency of 50\%	Class B amplifier				
	To overcome Cross over distortion	Class C amplifier				
	theoretical conversion efficiency of 25\%	Class AB amplifier				
	operating point is placed below the cut-off point on the DC load-line	Series fed class A amplifier.				
B	Given below is the output characteristic curve of power amplifier showing I/O signals with respect to load line. Identify the class. Hence draw the circuit diagram. Explain the same with the help of input and output waveforms. Is output faithful reproduction of the input? If yes explain under which condition?		10	1	1	1
$\begin{array}{r} 2 \\ \text { (i) } \\ \hline \end{array}$	Determine the frequency of oscillation for the astable multivibrator using IC555. Given that $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=2.5 \mathrm{~K} \Omega$ and $\mathrm{C}=1500 \mathrm{pF}$.		2	1	2	1
(ii)	State the Barkhausens criteria		2	5	1	7
(iii)	Explain the term order with respect to the filter.		2	2	1	3
(iv)	Linear regulators are more efficient than switching regulators. T/F. Justify		3	${ }^{2}$	5	4
(v)	Values of BW and gain of an amplifier without feedback are is 1000 Hz and 10^{3} respectively. Determine BW for feedback factor of -0.05 .		2	4	3	6

(vi)	A certain amplifier has a bandwidth of 22.5 kHz with a lower cutoff frequency of 800 Hz . What is the value of upper cut off frequency?				3		
(vii)	If DC power for a Class A power amplifier is 550 W and $A C$ power is 250 W , what is its efficiency?				3		
(viii)	Which type of power amplifier is biased for operation less than 180° of the cycle? State the application.	2			1		
(ix)	What do you mean by pass band with respect to active filter? Explain with frequency response.	3			2		
3 A	Determine higher cutoff frequency for the circuit shown below. Given $\mathrm{C}_{\mathrm{be}}=36 \mathrm{pF}, \mathrm{C}_{\mathrm{bc}}=4 \mathrm{pF}, \mathrm{C}_{\mathrm{ce}}=1 \mathrm{pF}, \mathrm{C}_{\mathrm{wl}}=6 \mathrm{pF}, \mathrm{C}_{\mathrm{wo}}=8 \mathrm{pF}, \mathrm{h}_{\mathrm{fe}}=100$,	10			3		
B	State true/ False. Justify.	10	4		5	2	
(i)	Opamp is suitable for amplification of DC signals						
(ii)	Gain of BJT reduces at high frequency.						
$\begin{aligned} & \hline 4 \mathrm{~A} \\ & \text { (i) } \end{aligned}$	Voltage gain of an amplifier without feedback is 80 dB . It decreases to 40 dB with feedback. Determine the value of feedback factor.	3	4		3	6	
(ii)	The distortion in an amplifier with feedback is found to be 3%. The feedback factor is 0.04 . When the feedback is removed, the distortion becomes 15%. Find the open and closed loop gain.	3	4		3	6	
(iii)	With a negative voltage feedback, an amplifier gives an output of 10 V with an input of 0.5 V . When feedback is removed, it requires 0.25 V input for the same output. Calculate (i) gain with feedback (ii) gain without feedback (iii) feedback fraction.	4	4		3	6	
B	State whether following statements are true or false. Justify your answer.	10	4		5		
(i)	Input impedance increases in case of current series feedback						
(ii)	Negative feedback is employed in the amplifiers in spite of reduction in gain						
$5 \mathrm{~A}$ (i)	Voltage regulator has to provide 6 V at 10 A . Draw the suitable circuit diagram using 723 specifying component values.	5	3		1	4	

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem. Examination - July 2023

Program: B. Tech. (Electrical)
Lem V Course Code: PC-BTE402
Course Name: Electrical and electronic measurement

Notes:

$$
\text { S.1.B Tech }(\text { Sem W })
$$

1. Question number 1 compulsory.
2. Attempt any four questions out of remaining six.
3. Draw neat diagrams.
4. Assume suitable data if necessary.

(b) With the help of neat diagram explain in detail working of duel slope integrating type digital volt meter. What are the advantages of a duel slope
integrating DVM over Ramp type DVM.
5. (a) A Lissajous pattern on the oscilloscope is stationary and has 6 vertica maximum values and five horizontal maximum values. The frequency of horizontal input is 1500 Hz . Determine the frequency of vertical input.
(b) Prove that

$$
G_{f}=1+2 v+\frac{\Delta \rho / \rho}{\varepsilon}
$$

3. (a) Draw null and extreme positions of LVDT transducer to get zero, minimum and maximum output voltage.
(b) With the help of neat diagram explain in detail how to measure frequency of given signal using digita! frequency meter?

4. (a) Draw and explain the nature of equivalent circuit and corresponding phasor diagram of a current transformer. Derive expressions for the corresponding ratio error and phase angle error.
(b) Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b).

(a)

(b)

5. (a)	With the help of neat diagram explain in details construction and working principal of Megger.	10	1	L1	2
(b)	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV . This instrument is to be used with a series multiplier to extend its range to 10 V . Calculate multiplier resistance value?	05	2	L2	1
(c)	Explain in detail a five point calibration method with flow chart.	05	1	L1	7
6.	With the help of neat diagram explain in details how to measure water level by using following methods. a. Resistive method b. Inductive method c. Capacitive method	20	2	L2	6
7. (a)	With the help of neat diagram explain in detail how to measure time interval between two events digitally?	10	1	L1	5
(b)	Two watt meters are connected to measure the power consumed by a 3-phase load with a power factor of 0.35 . Total power consumed by the load, as indicated by the two watt meters, is 70 kW . Find the individual wattmeter readings.	05	3	L3	1
(c)	Explain the term 1. Sampling and holding 2. Quantizing and encoding	05	1	L1	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
END SEMESTER EXAMINATION JULY 2023
Program: SYBTech(E)
Course Code: $\overline{\text { PC-BTE403 }}$
Course Name: Singals and Systems

Duration: 3 Hr

Maximum Points :100
Semester: IV

Note: a) Q1 is compulsory.
b) Solve any four from remaining questions.
c) Assume suitable data if required.

END SEMESTER EXAMINATION JULY 2023

Q3a)	Realize a DT system in Direct I and Direct II form if system transfer function is $H(z)=\frac{(z+2)(z+3)}{(z+1)(z+4)(z+5)}$	10	05	03	07
Q3b)	Obtain series and parallel realization of a system having transfer function $H(s)=\frac{4(s+1)}{(s+2)(s+5)}$.	10	05	03	07
Q4a)	Plot signal $\mathrm{x}(\mathrm{t}+3)$ and $\mathrm{x}(-2 \mathrm{t}+3)$ if $x(t)=\left\{\begin{array}{c}1-t, 0 \leq t \leq 1 \\ 0, \text { otherwise }\end{array}\right.$	05	01	03	01
Q4b)	Test if the signal $x[n]=(-1)^{n}$ is causal, periodic, power signal. Justify the same.	05	01	03	01
Q4c)	Determine output of the system using graphical method if $x[n]=\left(\frac{1}{2}\right)^{n} u[n]$ and $h[n]=\delta[n]-\frac{1}{2} \delta[n-1]$. Comment on the stability of the system and classify it as FIR /IIR system.	10	02	03	02
Q5a)	State and prove convolution property of Z-Transform	05	05	02	05
Q5b)	Determine impulse response and output of the system described as $2 \frac{d y}{d t}-7 y=10 x(t)$ where $x(t)=e^{-2 t} u(t)$. Comment on the stability of the system	05	04	03	04
Q5c)	The unit step response of a second order underdamped system starting from rest is given by $c(t)=12.5 e^{-6 t} \sin (8 t) u(t)$. Calculate steady state value of the unit step response of the system. Draw pole zero plot of the system and comment on the stability.	10	04	03	04
Q6a)	Determine Z-Transform of $\mathrm{y}[\mathrm{n}]=\mathrm{x} 1[\mathrm{n}] * \mathrm{x} 2[\mathrm{n}]$ where $x_{1}[n]=\left\{2, \frac{5}{4},-6,7\right\}, x_{2}[n]=\{4,2,3\}$	05	05	03	05
Q6b)	Determine inverse Z-Transform of $X(z)=\frac{4}{z+5}$ if $\|z\|<5$. Use long division method.	05	05	03	05
Q6c)	Determine inverse Z-Transform of $X(z)=\frac{2 z-4}{3 z^{2}-4 z+1}$ if $\|z\|<1 / 3$	10	05	03	05
Q7a)	For a LTI system described by $y[n]-5 y[n-1]+6 y[n-2]=x[n]$, where x is input and y is output of the system, determine output of the system if $x[n]=u[n] \quad, y[-1]=3, y[-2]=2$. Determine output of the system using time domain analysis.	10	02	03	02
Q7b)	Obtain zero state and zero input response of system described in Q7a). (Use Z-transform)	10	05	03	06

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

End Sem July 2023
Program: Electrical Engineering
Course code: PC-BTE404
Name of the Course: Microprocessor and Microcontroller
$24 \mid \geqslant 3$
Duration: 3 Hours
Max. Marks: 100
Sem. IV

- Solve any five questions out of seven.
- Answers to all sub questions should be grouped together.
- Make suitable assumptions whenever necessary. State them clearly.
- Diagrams drawn to support your answer should be clearly visible.

$\begin{array}{r} 3 \mathrm{~A} \\ \text { (i) } \\ \hline \end{array}$	Find (a) the frequency of the square wave generated in the following code (b) the duty cycle of this wave. Given clock frequency 11.0592 MHz	5	2	$\cdot 3$	5
	MOV TMOD, \#2H MOV TH0, -150 AGAIN : SETB P1.3 ACALL DELAY ACALL DELAY CLR P1.3 ACALL DELAY SJMP AGAIN DELAY: SETB TR0 BACK: JNB TF0, BACK CLR TR0 CLR TR0 RET				
(ii)	The word "SYBTech" is stored in ROM space starting from 250 H . Write a program to transfer these bytes into RAM locations starting from 40 H .	5	1	3	3
$\begin{gathered} \mathrm{B} \\ \text { (i) } \end{gathered}$	Draw the interfacing diagram with LCD and 8051, in which Port 1 is used to connect data bus of 8051. P 2.0, P 2.1 and P2.2 are to be connected to RS, $\mathrm{R} \bar{W}, \mathrm{E}$ respectively. Write a subroutine for writing command to LCD.	6	2	3	
(ii)	Explain difference between RET ands RETI	4	1	1	
4A	With the help of neat timing diagram explain the role of following pins of ADC 0804. (i) CS (ii) WR (iii) D0-D7 (iv) INTR (v) RD	10	2	2	5
B	Explain the connection between 8051 and DAC0808 with the help of a neat interfacing diagram. Write a program to generate triangular waveform.	10	21	3	5
5A	Write a program that continuously gets 8 -bit data from P0 and sends it to P1 while simultaneously creating a square wave having period of $200 \mu \mathrm{~S}$. (on pin P2.1). Use Timer 0 in mode 2 to create the square wave. Assume that XTAL $=11.0592 \mathrm{MHz}$. Explain the use of interrupt in detail.	10	2	3	5
$\begin{gathered} \mathbf{B} \\ \text { (i) } \end{gathered}$	Explain what is represented by the following part of the code. Specify its significance with the help of suitable diagrams.	96	1	1	2
	PUSH 05 PUSH 06 PUSH 0F0H POP 0E0H POP 02 POP 03				
(ii)	Draw the diagram showing the PSW register. Hence write proper instructions to select bank 3.	4	1	2	2
6A	4×4 matrix keyboard is to be interfaced with 8051 connecting D0 to D3 of port 1 as rows and D0 to D3 of port 2 as columns. Draw the diagram showing the connection. Explain the method to confirm valid key press.	10	2	2	7
$\begin{gathered} \bar{B} \\ \text { (i) } \end{gathered}$	With the help of a neat diagram showing TCON and IE, explain the following code lines. MAIN : SETB TCON. 2 MOV IE, \#10000100B HERE: SJMP HERE END	4	1	1	4

	A letter ' Y ' is to be transferred serially at a baud rate of 4800 . Crystal frequency is 11.0592 MHz . Explain initialization required i.e. value to be stored in SCON, TMOD, TH1. Explain with suitable diagrams.	2	6
$\begin{aligned} & \text { 7A } \\ & \text { (i) } \end{aligned}$	Assuming that XTAL $=11.0592 \mathrm{MHz}$ for the following program, (a) explain what this program does (b) find the baud rate of the data transfer.	23	6
	MOV A, PCON SETB ACC.7 MOV PCON, A MOV TMOD, \#20H MOV TH1, -3 MOV SCON, \#50H SETB TR1 MOV A, "B" A_1: CLR TI MOV SBUF, A H_1: JNB TI H_1 SJMP A 1		
(ii)	Assuming crystal frequency of 12 MHz , calculate the delay associated with HERE loop. It is given that machine cycles required for NOP is 1 and for DJNZ is 2. DELAY: MOV R4, \#250 HERE: NOP NOP NOP NOP NOP DJNZ R4, HERE RET	${ }^{1}{ }^{1}$	4
(iii)	A switch is connected to pin P1.7 and LED to Pin 2.0. Write a program to get status of the switch and send it to the LED using BIT directive.	3	4
B	Refer to the diagram. Determine the address space of data RAM and data ROM and explain function of pins ALE, EA.	3 3	5
		$\begin{gathered} v_{\infty} \infty \\ 8 \\ 1 \\ 1 \\ \infty \\ \hline \end{gathered}$	

SIRDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEM EXAMINATION JULY 2023

Program: Electrical Engineering
Course Code: PC-BTE 405
Course Name: Electrical Machines -1

- Question 1 is compulsory
- Solve any 4 questions from remaining 6 questions

Semester: IV

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
ENDSEM EXAMINATION JULY 2023

	efficiency				
b)	Lap winding is used for high current and low voltage ratings. Justify.	2	2	2	4
Q6)	Derive the torque developed in a rotational electromagnetic system shown in given figure. i_{s} and i_{r} are stator and rotor currents.	20	1	2	3
Q7)	Consider the system show above. Let the movable part move from one position (say $x=x 1$) to another position ($\mathrm{x}=\mathrm{x} 2$) so that at the end of the movement the air gap decreases. Derive the mechanical force developed for following conditions a) the movable part has moved slowly b) the movable part has moved quickly	20	1	2	3

Bharatiya Vida Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING
(An Autonomous Institution Affiliated to University of Mumbai)
Munshi Nagar Andheri (W) Mumbai 400058

End Semester Exam

July 2023
Max. Marks: 100
Class: S.Y B. Tech
Name of the Course: Indian Traditional Knowledge

Duration: 3 Hrs
Semester: IV

Course Code: MC 002
Instructions:
S4. B.Tehe (civì|tTerf) Jer

- Draw neat sketches/diagrams wherever required
- Figure on right indicate maximum points for the given question, course outcomes attained and Bloom's Level All the best

Q4	Answer the following questions:				
(a)	Explain all 4"Vedas" in detail. What are the sections of Vedas.		(10)	$2-3$	2
(b)	Fill in the blanks				
	i. Sam Veda is chanted by priests.				
	ii. The term __ means those who sit near.				
	iii. The hymns of are dedicated to five elements of nature				
	iv. The \qquad is second section of Vedas which try to explain the importance of hymns in Samhitas				
	v. \qquad means liberation from the cycle of birth and death according to Rig Veda ——_				
(c)	Match the following		(05)		
	a ${ }^{\text {a }}$ Ayurveda	Yajurveda			
		Sam Veda			
	c Gandharvaveda -	Upanga			
	d Dhanurveda	Rig Veda			
	e Yoga	Vedanga			
Q5	Answer the following questions		(20)	$3-4$	
(a)	Explain in details the following classical dances with respect to region, description, dress/make up , unique features, instruments accompanied (a) Blaratnatyam (b) K.athak (c) Kathakali (d) Kuchipudi		(10)		
(b)	Give names of any 10 states with specific folk dance related to it		(05)		
(c)	Explain the term yoga and it's origin. Explain the role of yoga Asanas in day to day life of human being.		(05)		
Q6	Ans wer the following questions			3-4	
(a)	Ex plain the teachings and learning of Guru Nanak Dev		(05)		
(b)	Write a note on the journey of Prince Siddartha to Gautam Buddha.		(10)		
(c)	Explain the meaning of following dohas मार्टी कहे कुम्हार से, तू क्या रौंदे मोय। एक दिन ऐसा आएगा मैं रौदूगी तोय॥ गुरु गोविंद दोऊं खड़े, काके लागूं पांय। बलिहारी गुरु आपकी, गोविंद दियो बताय॥		(05)		
Q7	Answer the following questions		(20)		
(a)	Explain the various preachings of Jainism		(10)		
(b)	Write a note on linguistic history and tradition of India		(10)		

ALL THE BEST

[^0]: Gitles Cazelais. Typesct wilh [ATEX on April 20, 2006.

